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Abstract— A CHOKe is a simple to implement and stateless 
active queue management (AQM) schème. The top notch property 
that makes CHOKe attractive is that it can protect responsive TCP 
flows from unresponsive UDP flow. Studies have proved that both 
bandwidth share and buffer share of UDP traffic in a link can be 
bound together using a CHOKe. These studies were done and focus 
only for a steady state where the queue reaches equilibrium in the 
presence of many TCP flows and an non responsive UDP flow of fixed 
arrival rate. Studies failed to prove whether the protection property 
of CHOKe is valid especially when UDP traffic rate changes over 
time. For instance when the UDP rates falls to zero, the unresponsive 
flow may assume close to full utilization in sub-round-trip-time (sub-
RTT) scales, thereby making the TCP flows to starve. This paper 
investigates about the CHOKe queue properties in a transient regime 
and tries to explain the aforementioned discrepancy. A transient 
regime is defined as the time period of change between two steady 
states of the queue, initiated as the rate of the unresponsive flow 
changes. The results derived from the explicit expressions that 
characterize flow throughputs in transient regimes helps understand a 
CHOKe and provide ample explanation on its intriguing behavior in 
the transient regime.  

Index Terms— CHOKe, flow protection, queue management (QM), Random 
Early Detection (RED), TCP.  

INTRODUCTION 
A. Overview of the Flow Protection 

Widely classifying, there are two distinct ways to 
enforce flow fairness and protection in the Internet. One 
way is to follow the end-to-end architectural design 
principle of the Internet [1] and the other being a more 
classical way which is via congestion control algorithms, 
which are typically implemented in the transport protocols 
(e.g., TCP) of end-hosts [2]. All users are required to abide 
by the scheme and respond to the network congestion 
properly to ensure fairness in the system globally. 
However, for two reasons, these requirements cannot be 
satisfied. First reason being no performance incentive to 
end-users. This is mainly because the users, who lack the 
congestion control algorithms, intentionally may end to use 
with a major share of band- width. 
  The second reason is that in order to meet real-time 
requirements, many applications do not implement 
congestion control to protect responsive (e.g: TCP) flows 
from unresponsive (e.g: UDP) ones. It is thereby necessary  
to introduce some mechanisms in the network since relying 
solely on the end-to-end schemes can be unfair or risky. 
The second approach is provided through router 
mechanisms. Such a router mechanism can be either: Per-
flow fair queueing (PFFQ) scheme, e.g: Weighted Fair 
Queueing (WFQ) [3]: PFFQ schemes share link bandwidth 
among  flows in a fair manner by isolating the flows into 
separate logical or physical first-in–first-out (FIFO) queues 
and maintain flow-level state information [4][5]. Flow 
isolation protects well-behaved flows and enables 
performance guarantees to such flows by building firewalls 

around heavy users. For high-speed implementation the 
maintenance of per-flow state and the dynamic 
management of complex queue structure are believed to be 

problematic. 
1. 1) Queue management (QM) scheme, e.g: Random Early 

Detection (RED): 
QM schemes focus on the buffer allocation. With a 

single queue shared by all flows [6], QM scheme designs 
are generally simpler. Among other QM schemes, RED is 
the most widely known scheme because it maintains an 
exponentially moving average queue size which indicates 
the level of congestion in the router. Depending on the 
queue size, a congested RED router drops incoming 
packets with a certain probability. Both high-rate and low-
rate flows can be punished in equal measures, since the 
dropping probabilities are applied globally to all flows. The 
same ambient drop rate of RED can be more detrimental 
and highly unfair to some flows based on the nature of 
Internet flows (e.g: flow sizes, underlying transport 
protocol) and resultant differences in their responsiveness 
to congestion. This unfairness can be overcome by more 
complex variants of RED, e.g: Flow RED (FRED) [11] and 
RED with Proportional Differentiation (RED-PD) [12], by 
applying differential per-flow drop rates. But these schemes 
generally need to maintain partial flow state to be able to 
discriminate drop rates among flows [9]. It is to be noted 
that with no flow isolation, fairness afforded by a QM 
scheme is only approximate.  
B. CHOKe 
         Unlike FRED or RED-PD, the CHOKe is a highly 
novel QM scheme that does not require flow state to be 
maintained in the router. A CHOKe [13] is designed to 
protect responsive (rate-adaptive) flows from unresponsive 
ones. A CHOKe can be implemented by a few modification 
of the RED algorithm. To be concise “when a packet comes 
at a congested router, CHOKe draws a packet at randomly 
from the FIFO (first-in-first-out) buffer and compares it 
with the arriving packet from the flow. If they both belong 
to the same flow, then they are both dropped, else the 
randomly chosen packet is left intact and the arriving 
packet is admitted into the buffer with a probability 
(exactly as computed in RED) that depends on the level of 
congestion [13].  

An interesting feature of CHOKe is that it provides 
analytically proven protection of responsive flows from an 
unresponsive flow at the congested router. The following 
steady-state properties of CHOKe have been derived in the 
presence of many flows:[14]  [16] 
• Limits: An unresponsive UDP flow cannot exceed

certain limits in buffer share and link bandwidth share.
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The maximum UDP bandwidth share is of link 
capacity, and the maximum buffer share is 50% 

        [15] [16]  
•  Asymptotic property: As the UDP rate increases 

without bound, its buffer share can asymptotically 
reach 50%, and queueing delay can be reduced by half, 
but its link utilization drops to zero.  

•  Spatial distribution: The spatial packet distribution in 
the queue can be highly non uniform [14]. The 
probability of finding a packet belonging to a high-rate 
flow in the queue diminishes as we move toward the 
head of the queue. The flow distribution in queue is 
skewed with most packets of high-rate flows found 
closer to queue tail, where as packets of low rates are 
found closer to queue head.  

C.    CHOKe  Algorithm 
The algorithm here used is CHOKe, that differentially 

penalizes unresponsive and unfriendly flows. The state, 
taken to be the number of active flows and the flow ID of 
each of the packets, is assumed to be unknown to the 
algorithm. The only feature for the algorithm is the total 
occupancy of the buffer. CHOKe calculates the average 
occupancy of the FIFO buffer using an exponential moving 
average, similar as RED does. It also marks two thresholds 
on the buffer, a minimum threshold minth and a maximum 
threshold maxth. 
If the average queue size is smaller than minth, every 
arriving packet is queued into the FIFO buffer. If the 
aggregated arrival rate is lesser than the output link 
capacity, the average queue size should not constructed up 
to minth very often and packets are not dropped frequently. 
If the average queue size is larger than maxth, every 
arriving packet is dropped. This moves the queue 
occupancy back to below maxth. When the average queue 
size is bigger than minth, each arriving packet is compared 
with a randomly chosen packet, called drop candidate 
packet, from the FIFO buffer. If they have the similar flow 
ID, they are both dropped. Otherwise, the randomly chosen 
packet is kept in the buffer and the arriving packet is 
dropped with a probability that depends on the average 
queue size. The drop probability is computed same as in 
RED. 
A flow chart of the algorithm is given in Figure 1.  

 

The descendants of CHOKe are listed below: 
A. Front CHOKe 
The drop candidate is chosen from the front or head of 
queue. 
B. Back CHOKe 
The drop candidate is chosen from end of queue. 
C. Multi-drop CHOKe (M-CHOKe) 
n packets are chosen from the buffer to compare with the 
incoming packet, and drop the packets that have the same 
flow ID as the incoming packet. 
D. XCHOKe 
Algorithm uses data structure to store state information. 
Maintains a table to hold flow’s hit counter n. In 
XCHOKe, n depends solely on CHOKe hits [19]. 
E. RECHOKe 
It is similar to XCHOKe. The flow’s hit counter n depends 
on table hit when the packet’s flow ID is found in the 
table, CHOKe hit when the arriving packet’s ID matches 
that of the randomly chosen packet and RED hit whe n the 
packet is chosen for dropping / marking with the RED 
drop probability [19]. 
F. CSa-XCHOKe 
It improves XCHOKe by calculating packet dropping 
probability based on congestion level and link load. 
Congestion level is determined from link load and average 
queue length [11]. 
G. Self-Adjustable CHOKe (SAC) 
The mechanism treats TCP and UDP flows differently, and 
can adaptively adjust its parameters according to the 
current traffic status [12]. 
H. A-CHOKe 
CHOKe algorithm is a good solution for lockout and global 
synchronization problems but it sometime results in 
worsening TCP performance and does not work well in 
case of only few packets from unresponsive flows in the 
queue. Adaptive CHOKe (A-CHOKe) provides a stable 
operating point for the queue size and fair bandwidth 
allocation irrespective of the dynamic traffic and 
congestion characteristics of the flows [13]. It also obtains 
high utilization, low queuing delay and packet loss by 
tuning parameters adaptively. The dynamic value of 
parameter adapts itself to the varying nature of the 
congestion and traffic. A-CHOKe is a more sophisticated 
way to do M-CHOKe such that the algorithm automatically 
chooses the proper number of packets chosen from buffer 
where the buffer is divided into a number of regions [7]. 
I. P-CHOKe 
P-CHOKe (Piggybacking CHOKe) is an algorithm based 
on Adaptive CHOKe. It aims to protect well-behaved flows 
from misbehaving flow and adaptive flows from non-
adaptive flows [14]. P-CHOKe provides a stable operating 
point for the queue size and fair bandwidth sharing 
regardless of dynamic traffic and congestion characteristics 
of flows. P-CHOKE obtains high Packet delivery Ratio and 
throughput, low queuing delay and process time than the 
existing Adaptive CHOKe. The algorithm has a gateway 
module which draws, compares, admits or drops the 
packets randomly and sends collected acknowledgements 
from packet receiving nodes to sending nodes. 
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J. G-CHOKe 
gCHOKe (geometric CHOKe), is another method which 
provides an advanced flow protection which is realized by 
introducing an extra flow matching trial upon each 
successful matching of packets. The difference between 
CHOKe and gCHOKe is the number of trials that they use 
to differentiate. CHOKe penalize the unresponsive flow 
from possibly dominating the use of the buffer and the link 
using a single trial of flow matching per packet arrival. 
However, gCHOKe additionally rewards each successful 
matching with a additional trial. The succession of 
additional trials gives an extra shield of protection to rate 
adaptive flows from unresponsive ones . By reducing the 
defined maximum number of trials, a desired protection 
level may be gained. This makes traffic control more 
tractable, which is lacking in the original plain CHOKe 
where flow protection is flat. 
 

EVALUATION 
      In this section, we validate the results using 
simulations performed in ns-2.34. The network setup 
shown in Fig. 2 with the following settings is used: C = 20 
Mb/s or 2500 packets/s, link latency 1 ms,4 buffer size 
1000 packets, N = 1to10 TCP flows each of type  
UDP is 1 to 5. RED buffer thresholds (in packets) minth  = 
20 and max th  = 1000. Packet sizes are 1000 B. Flows 
start randomly on the interval [0. 2] s. 

  
Fig: 2 UDP throughput comparisons 

 
VI. CONCLUSION AND FUTURE WORK 

     This paper looks in a packet dropping scheme, CHOKe. 
This helps to attain fairness at a minimal implementation 
overhead. While existing works mainly concentrated on the 
Choke which limit the behavior of queue, when queue 
reaches equilibrium. The reaches equilibrium in the 
presence of long-lived TCP flows and UDP flows. The lack 
of showing properties where exogenous rates of 
unresponsive flows may dynamically change. This paper 
concern with Choke queue behavior when time changes. 
Which we model by transition from one steady queue to 
another. And found that the performance limits in steady 
state rarely hold for such transient regimes. When the rate 
change the queue exhibits instant fluctuation of UDP 
bandwidth sharing in reverse direction. This  affect the 
smooth operation of internet. Here we consider only one 
UDP flows. When multiple UDP flows arrive there are two 

possible ways to analysis. One is to treat all UDP flows as 
single UDP flow. Then  the same analysis flows hold. But 
the result is not suited to all .If  one is interested in the 
individual buffer share and link bandwidth share each UDP 
flow, the current result are not applicable, future work is 
needed. 
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