
CHOKe: A Stateless Queue for Securing Flows
Saniya Elza Dominic1, Gayathri .R Krishna2

Department of CSE, Mangalam College of Engineering
Kottayam, Kerala, India- 686631

Abstract— A CHOKe is a simple to implement and stateless
active queue management (AQM) schème. The top notch property
that makes CHOKe attractive is that it can protect responsive TCP
flows from unresponsive UDP flow. Studies have proved that both
bandwidth share and buffer share of UDP traffic in a link can be
bound together using a CHOKe. These studies were done and focus
only for a steady state where the queue reaches equilibrium in the
presence of many TCP flows and an non responsive UDP flow of fixed
arrival rate. Studies failed to prove whether the protection property
of CHOKe is valid especially when UDP traffic rate changes over
time. For instance when the UDP rates falls to zero, the unresponsive
flow may assume close to full utilization in sub-round-trip-time (sub-
RTT) scales, thereby making the TCP flows to starve. This paper
investigates about the CHOKe queue properties in a transient regime
and tries to explain the aforementioned discrepancy. A transient
regime is defined as the time period of change between two steady
states of the queue, initiated as the rate of the unresponsive flow
changes. The results derived from the explicit expressions that
characterize flow throughputs in transient regimes helps understand a
CHOKe and provide ample explanation on its intriguing behavior in
the transient regime.

Index Terms— CHOKe, flow protection, queue management (QM), Random
Early Detection (RED), TCP.

INTRODUCTION
A. Overview of the Flow Protection

Widely classifying, there are two distinct ways to
enforce flow fairness and protection in the Internet. One
way is to follow the end-to-end architectural design
principle of the Internet [1] and the other being a more
classical way which is via congestion control algorithms,
which are typically implemented in the transport protocols
(e.g., TCP) of end-hosts [2]. All users are required to abide
by the scheme and respond to the network congestion
properly to ensure fairness in the system globally.
However, for two reasons, these requirements cannot be
satisfied. First reason being no performance incentive to
end-users. This is mainly because the users, who lack the
congestion control algorithms, intentionally may end to use
with a major share of band- width.
 The second reason is that in order to meet real-time
requirements, many applications do not implement
congestion control to protect responsive (e.g: TCP) flows
from unresponsive (e.g: UDP) ones. It is thereby necessary
to introduce some mechanisms in the network since relying
solely on the end-to-end schemes can be unfair or risky.
The second approach is provided through router
mechanisms. Such a router mechanism can be either: Per-
flow fair queueing (PFFQ) scheme, e.g: Weighted Fair
Queueing (WFQ) [3]: PFFQ schemes share link bandwidth
among flows in a fair manner by isolating the flows into
separate logical or physical first-in–first-out (FIFO) queues
and maintain flow-level state information [4][5]. Flow
isolation protects well-behaved flows and enables
performance guarantees to such flows by building firewalls

around heavy users. For high-speed implementation the
maintenance of per-flow state and the dynamic
management of complex queue structure are believed to be

problematic.
1. 1) Queue management (QM) scheme, e.g: Random Early

Detection (RED):
QM schemes focus on the buffer allocation. With a

single queue shared by all flows [6], QM scheme designs
are generally simpler. Among other QM schemes, RED is
the most widely known scheme because it maintains an
exponentially moving average queue size which indicates
the level of congestion in the router. Depending on the
queue size, a congested RED router drops incoming
packets with a certain probability. Both high-rate and low-
rate flows can be punished in equal measures, since the
dropping probabilities are applied globally to all flows. The
same ambient drop rate of RED can be more detrimental
and highly unfair to some flows based on the nature of
Internet flows (e.g: flow sizes, underlying transport
protocol) and resultant differences in their responsiveness
to congestion. This unfairness can be overcome by more
complex variants of RED, e.g: Flow RED (FRED) [11] and
RED with Proportional Differentiation (RED-PD) [12], by
applying differential per-flow drop rates. But these schemes
generally need to maintain partial flow state to be able to
discriminate drop rates among flows [9]. It is to be noted
that with no flow isolation, fairness afforded by a QM
scheme is only approximate.
B. CHOKe
 Unlike FRED or RED-PD, the CHOKe is a highly
novel QM scheme that does not require flow state to be
maintained in the router. A CHOKe [13] is designed to
protect responsive (rate-adaptive) flows from unresponsive
ones. A CHOKe can be implemented by a few modification
of the RED algorithm. To be concise “when a packet comes
at a congested router, CHOKe draws a packet at randomly
from the FIFO (first-in-first-out) buffer and compares it
with the arriving packet from the flow. If they both belong
to the same flow, then they are both dropped, else the
randomly chosen packet is left intact and the arriving
packet is admitted into the buffer with a probability
(exactly as computed in RED) that depends on the level of
congestion [13].

An interesting feature of CHOKe is that it provides
analytically proven protection of responsive flows from an
unresponsive flow at the congested router. The following
steady-state properties of CHOKe have been derived in the
presence of many flows:[14] [16]
• Limits: An unresponsive UDP flow cannot exceed

certain limits in buffer share and link bandwidth share.

Saniya Elza Dominic et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1457-1459

www.ijcsit.com 1457

The maximum UDP bandwidth share is of link
capacity, and the maximum buffer share is 50%

 [15] [16]
• Asymptotic property: As the UDP rate increases

without bound, its buffer share can asymptotically
reach 50%, and queueing delay can be reduced by half,
but its link utilization drops to zero.

• Spatial distribution: The spatial packet distribution in
the queue can be highly non uniform [14]. The
probability of finding a packet belonging to a high-rate
flow in the queue diminishes as we move toward the
head of the queue. The flow distribution in queue is
skewed with most packets of high-rate flows found
closer to queue tail, where as packets of low rates are
found closer to queue head.

C. CHOKe Algorithm
The algorithm here used is CHOKe, that differentially

penalizes unresponsive and unfriendly flows. The state,
taken to be the number of active flows and the flow ID of
each of the packets, is assumed to be unknown to the
algorithm. The only feature for the algorithm is the total
occupancy of the buffer. CHOKe calculates the average
occupancy of the FIFO buffer using an exponential moving
average, similar as RED does. It also marks two thresholds
on the buffer, a minimum threshold minth and a maximum
threshold maxth.
If the average queue size is smaller than minth, every
arriving packet is queued into the FIFO buffer. If the
aggregated arrival rate is lesser than the output link
capacity, the average queue size should not constructed up
to minth very often and packets are not dropped frequently.
If the average queue size is larger than maxth, every
arriving packet is dropped. This moves the queue
occupancy back to below maxth. When the average queue
size is bigger than minth, each arriving packet is compared
with a randomly chosen packet, called drop candidate
packet, from the FIFO buffer. If they have the similar flow
ID, they are both dropped. Otherwise, the randomly chosen
packet is kept in the buffer and the arriving packet is
dropped with a probability that depends on the average
queue size. The drop probability is computed same as in
RED.
A flow chart of the algorithm is given in Figure 1.

The descendants of CHOKe are listed below:
A. Front CHOKe
The drop candidate is chosen from the front or head of
queue.
B. Back CHOKe
The drop candidate is chosen from end of queue.
C. Multi-drop CHOKe (M-CHOKe)
n packets are chosen from the buffer to compare with the
incoming packet, and drop the packets that have the same
flow ID as the incoming packet.
D. XCHOKe
Algorithm uses data structure to store state information.
Maintains a table to hold flow’s hit counter n. In
XCHOKe, n depends solely on CHOKe hits [19].
E. RECHOKe
It is similar to XCHOKe. The flow’s hit counter n depends
on table hit when the packet’s flow ID is found in the
table, CHOKe hit when the arriving packet’s ID matches
that of the randomly chosen packet and RED hit whe n the
packet is chosen for dropping / marking with the RED
drop probability [19].
F. CSa-XCHOKe
It improves XCHOKe by calculating packet dropping
probability based on congestion level and link load.
Congestion level is determined from link load and average
queue length [11].
G. Self-Adjustable CHOKe (SAC)
The mechanism treats TCP and UDP flows differently, and
can adaptively adjust its parameters according to the
current traffic status [12].
H. A-CHOKe
CHOKe algorithm is a good solution for lockout and global
synchronization problems but it sometime results in
worsening TCP performance and does not work well in
case of only few packets from unresponsive flows in the
queue. Adaptive CHOKe (A-CHOKe) provides a stable
operating point for the queue size and fair bandwidth
allocation irrespective of the dynamic traffic and
congestion characteristics of the flows [13]. It also obtains
high utilization, low queuing delay and packet loss by
tuning parameters adaptively. The dynamic value of
parameter adapts itself to the varying nature of the
congestion and traffic. A-CHOKe is a more sophisticated
way to do M-CHOKe such that the algorithm automatically
chooses the proper number of packets chosen from buffer
where the buffer is divided into a number of regions [7].
I. P-CHOKe
P-CHOKe (Piggybacking CHOKe) is an algorithm based
on Adaptive CHOKe. It aims to protect well-behaved flows
from misbehaving flow and adaptive flows from non-
adaptive flows [14]. P-CHOKe provides a stable operating
point for the queue size and fair bandwidth sharing
regardless of dynamic traffic and congestion characteristics
of flows. P-CHOKE obtains high Packet delivery Ratio and
throughput, low queuing delay and process time than the
existing Adaptive CHOKe. The algorithm has a gateway
module which draws, compares, admits or drops the
packets randomly and sends collected acknowledgements
from packet receiving nodes to sending nodes.

Saniya Elza Dominic et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1457-1459

www.ijcsit.com 1458

J. G-CHOKe
gCHOKe (geometric CHOKe), is another method which
provides an advanced flow protection which is realized by
introducing an extra flow matching trial upon each
successful matching of packets. The difference between
CHOKe and gCHOKe is the number of trials that they use
to differentiate. CHOKe penalize the unresponsive flow
from possibly dominating the use of the buffer and the link
using a single trial of flow matching per packet arrival.
However, gCHOKe additionally rewards each successful
matching with a additional trial. The succession of
additional trials gives an extra shield of protection to rate
adaptive flows from unresponsive ones . By reducing the
defined maximum number of trials, a desired protection
level may be gained. This makes traffic control more
tractable, which is lacking in the original plain CHOKe
where flow protection is flat.

EVALUATION
 In this section, we validate the results using
simulations performed in ns-2.34. The network setup
shown in Fig. 2 with the following settings is used: C = 20
Mb/s or 2500 packets/s, link latency 1 ms,4 buffer size
1000 packets, N = 1to10 TCP flows each of type
UDP is 1 to 5. RED buffer thresholds (in packets) minth =
20 and max th = 1000. Packet sizes are 1000 B. Flows
start randomly on the interval [0. 2] s.

Fig: 2 UDP throughput comparisons

VI. CONCLUSION AND FUTURE WORK

 This paper looks in a packet dropping scheme, CHOKe.
This helps to attain fairness at a minimal implementation
overhead. While existing works mainly concentrated on the
Choke which limit the behavior of queue, when queue
reaches equilibrium. The reaches equilibrium in the
presence of long-lived TCP flows and UDP flows. The lack
of showing properties where exogenous rates of
unresponsive flows may dynamically change. This paper
concern with Choke queue behavior when time changes.
Which we model by transition from one steady queue to
another. And found that the performance limits in steady
state rarely hold for such transient regimes. When the rate
change the queue exhibits instant fluctuation of UDP
bandwidth sharing in reverse direction. This affect the
smooth operation of internet. Here we consider only one
UDP flows. When multiple UDP flows arrive there are two

possible ways to analysis. One is to treat all UDP flows as
single UDP flow. Then the same analysis flows hold. But
the result is not suited to all .If one is interested in the
individual buffer share and link bandwidth share each UDP
flow, the current result are not applicable, future work is
needed.

ACKNOWLEDGMENT
The first author would like to thanks all those people,

who guided and supported. Without their valuable guidance
and support, this task was not possible and also likes to
thank colleagues for their discussions and suggestions.

REFERENCES

[1] J.H.Saltzer,D.P.Reed,andD.D.Clark,“End-to-end arguments in
system design,” Trans. Comput. Syst., vol. 2, no. 4, pp. 277-288,
1984.

[2] M. Allman, V. Paxson, and E. Blanton,“TCP congestion control,”
RFC 5681, Sep. 2009.

[3] A.Demers,S.Keshav,andS.Shenker,“Analysis and simulation of a fair
queuing algorithm,” in Proc. ACM/SIGCOMM, 1989, pp. 1-12.

[4] S. Floyd and V.Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp.
397-413, Aug. 1993.

[5] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue
management,” Tech. Rep., 2001.

[6] S. Keshav, “An Engineering Approach to Computer Networking:
ATM Networks, the Internet, and the Telephone Network. Reading”,
MA, USA: Addison-Wesley-Longman, 1997.

[7] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “Evaluating
the number of active flows in a scheduler realizing fair statistical
band¬width sharing,” in Proc. ACM/SIGMETRICS, 2005, pp. 217-
228.

[8] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury, “Buffer
man¬agement schemes for supporting TCP in gigabit routers with
per-flow queueing,” IEEE J. Sel. Areas Commun., vol. 17, no. 6, pp.
1159-1169, Jun. 1999.

[9] A. Eshete and Y. Jiang, “Approximate fairness through limited flow
list,” in Proc. Int. Teletraffic Cong., 2011, pp. 198-205.

[10] C. Hu, Y. Tang, X. Chen, and B. Liu, “Per-flow queueing by
dynamic queue sharing,” in Proc. IEEE INFOCOM, 2007, pp. 1613-
1621.

[11] D. Lin and R. Morris, “Dynamics of random early detection,”
Comput. Commun. Rev., vol. 27, no. 4, pp. 127-137, 1997.

[12] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling high-
bandwidth flows at the congested router,” in Proc. IEEE ICNP,
2001, pp. 192-201.

[13] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe—A stateless active
queue management scheme for approximating fair bandwidth
alloca¬tion,” in Proc. IEEE INFOCOM, 2000, pp. 942-951.

[14]A.Tang,J.Wang,andS.H. Low,“UnderstandingCHOKe: Throughput
and spatial characteristics,” IEEE/ACM Trans. Netw., vol. 12, no. 4,
pp. 694-707, Aug. 2004.

[15] J. Wang, A. Tang, and S. H. Low, “Maximum and asymptotic UDP
throughput under CHOKe,” in Proc. ACM SIGMETRICS, 2003, pp.
82-90.

[16] R. Pan,C.Nair, B. Yang, and B. Prabhakar, “Packet dropping
schemes, some examples and analysis,” in Proc. Allerton Conf
Commun. , Contro, Comput., 2001, pp. 563-572.

[17] H. Jiang and C. Dovrolis, “Why is the Internet traffic bursty in short
time scales?' ” in Proc. ACM SIGMETRICS, 2005, pp. 241-252.

[18] F. Baccelli and D. Hong, “AIMD, fairness and fractal scaling of
TCP traffic,” in Proc. IEEE INFOCOM, 2002, pp. 229-238.

[19] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide
Web traffic: Evidence and possible causes,” in Proc. ACM
SIGMETRICS, 1996,pp.160-169.

[20] A. Eshete and Y. Jiang, “Generalizing the choke flow protection,”
Comput. Netw., vol. 57, no. 1, pp. 147-161, 2013.

[21] A. Tang, L. L. H. Andrew, K. Jacobsson, K. H. Johansson, H. Hjal-
marsson, and S. H. Low, “Queue dynamics with window flow
control,” IEEE/ACM Trans. Netw., vol. 18, no. 5, pp. 1422-1435,
Oct. 2010.

Saniya Elza Dominic et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1457-1459

www.ijcsit.com 1459

